Vandermonde Determinant

Vandermonde Determinant

det(x00x10xn10x01x11xn11x0n1x1n1xn1n1) i  i1  x0 =det(11110x10(x1x0)x20(x2x0)xn10(xn1x0)0x11(x1x0)x21(x2x0)xn11(xn1x0)0x1n2(x1x0)x2n2(x1x0)xn1n2(xn1x0))xix0=i>1(xix0)(x10x20xn20x11x21xn21x0n2x1n2xn2n2)=ij(xixj)