设 $\\displaystyle C(x)=\\sum_{i=0}^{\\infty} C_i$
设 \(\displaystyle C(x)=\sum_{i=0}^{\infty} C_i\)
易知 \(xC^2=C-1\)
设 \(F_{n,m}=[x^m](C-1)^n,F_n(x)=(C-1)^n\)
知 \(F_n(x)=(C-1)^n=xC^2 (C-1)^{n-1}=x ((C-1)^{n+1}+2(C-1)^n+(C-1)^{n-1})\)
即 \(F_{n,m}=F_{n+1,m-1}+2F_{n,m-1}+F_{n-1m-1}\)
即 \(F_{n,m}=F_{n-1,m+1}-2F_{n-1,m}-F_{n-2,m}\)
进一步规约,得到答案的表达式
\(\displaystyle Ans_i=[x^n] (C(x)-1)^i [y^i] e^{\varphi}\)
其中 \(\displaystyle \varphi=\sum _{i\ge 1}2(i+1) \cdot (C(x)-1) y^i\)
\(\displaystyle \varphi=\sum _{i\ge 1}2(i+1) \cdot (C(x)-1) y^i\)
\(\displaystyle \int \varphi\ dy =\sum_{i\ge 1} 2(C(x)-1) y^{i+1}=\sum_{i\ge 2} 2(C(x)-1) y^i\)
\(\displaystyle \int \varphi\ dy = 2(C(x)-1) \frac{y^2}{1-y}\)
\(\displaystyle \varphi=2(C(x)-1) (\frac{y^2}{1-y})'=2(C(x)-1) \frac{2y-y^2}{(1-y)^2}\)
\(G_{n,m}\) 为 \(n\) 个白格, \(m\) 为总格数的权值
\(\displaystyle G_{n}(x)=(\sum_{i\ge 2} 2i x^i)^n\)
设 \(\displaystyle \varphi(x)=\sum_{i\ge 2} 2i x^i\)
\(\displaystyle \varphi(x)=2x(\sum_{i\ge 2} x^i)'=2x^2 \frac{2-x}{1-x}\)
\(G_n(x)=\varphi^n(x)\)
\(Ans_i\) 表示有 \(i\) 个白格的答案
\(Ans_i=\displaystyle \sum_j G_{i,j} F_{j,n}\)